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Nonequilibrium Phase Transition in a Model of
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We study the nonequilibrium phase transition in a model of aggregation of
masses allowing for diffusion, aggregation on contact, and fragmentation. The
model undergoes a dynamical phase transition in all dimensions. The steady-
state mass distribution decays exponentially for large mass in one phase. In the
other phase, the mass distribution decays as a power law accompanied, in addi-
tion, by the formation of an infinite aggregate. The model is solved exactly
within a mean-field approximation which keeps track of the distribution of
masses. In one dimension, by mapping to an equivalent lattice gas model, exact
steady states are obtained in two extreme limits of the parameter space. Critical
exponents and the phase diagram are obtained numerically in one dimension.
We also study the time-dependent fluctuations in an equivalent interface model
in (1 + 1) dimension and compute the roughness exponent y and the dynamical
exponent z analytically in some limits and numerically otherwise. Two new fixed
points of interface fluctuations in (1 + 1) dimension are identified. We also
generalize our model to include arbitrary fragmentation kernels and solve the
steady states exactly for some special choices of these kernels via mappings to
other solvable models of statistical mechanics.
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I. INTRODUCTION

By now, there is a fairly good understanding of the nature and properties
of phase transitions in systems in thermal equilibrium, as one changes the
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strengths of external fields such as temperature, pressure or magnetic field.
On the other hand there is a wide variety of inherently nonequilibrium
systems in nature whose steady states are not described by the equilibrium
Gibbs distribution, but are instead determined by the underlying
microscopic dynamical processes. The steady states of such systems may
undergo nonequilibrium phase transitions as one changes the rates of the
underlying dynamical processes. As compared to their equilibrium counter-
parts, these nonequilibrium steady states and the transitions between them
are much less understood owing to the lack of a general framework. It is
therefore necessary to study simple models of nonequilibrium processes,
both in order to discover new types of transitions as well as to understand
the mechanisms which give rise to them.

In this paper, we study nonequilibrium phase transitions in an impor-
tant class of systems which involve the microscopic processes of diffusion,
aggregation upon contact and fragmentation of masses. These processes
arise in a variety of physical settings, for example, in the formation of
colloidal suspensions,™ polymer gels,® river networks,** aerosols and
clouds.® They also enter in an important way in surface growth
phenomena involving island formation.® Below we introduce a simple lat-
tice model incorporating these microscopic processes and study the non-
equilibrium steady states and the transitions between them both analyti-
cally within mean field theory and numerically in one dimension. Some
of the results of this paper have been reported earlier in a shorter
version.”)

The paper is organized as follows. In Section II, we define the model
and summarize our main results. In Section III, we solve the mean field
theory exactly and characterize the phases and the transitions between
them. In Section IV, we report the results of numerical simulations in one
dimension for both symmetric and asymmetric transport of masses. In
Section V, the model in one dimension is mapped exactly to a lattice gas
model whose properties are used to deduce the steady state mass distribu-
tion exactly in two extreme limits. In Section VI, we map this lattice gas
model further to an interface model and make connections to other well
studied interface models in some limits. We study the dynamics by comput-
ing the width of the interface both analytically in some limiting cases and
numerically otherwise. We identify two new fixed points of interface
dynamics in (1 + 1) dimension. In Section VII, we generalize our model to
include an arbitrary fragmentation kernel and obtain exact results for
special choices of this kernel via mappings to other solvable models of
statistical mechanics. In the Appendix we outline the exact solution for
uniform fragmentation kernels. Finally we conclude with a summary and a
discussion of a few open questions in Section VIII.
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Il. THE MODEL

Our model of diffusion, aggregation and dissociation is defined on a
lattice, and evolves in continuous time. For simplicity we define it on a
one-dimensional lattice with periodic boundary conditions although
generalizations to higher dimensions are quite straightforward. Beginning
with a state in which the masses are placed randomly, a site i is chosen at
random. Then one of the following events can occur:

1. Diffusion and Aggregation: With rate p,, the mass m; at site i
moves either to site i — 1 or to site i + 1. If it moves to a site which already
has some particles, then the total mass just adds up; thus m;— 0 and
m; 1> M +m,.

2. Chipping (single-particle dissociation): With rate p,, a bit of the
mass at the site “chips” off, i.e., provided m; > 1, a single particle leaves site
i and moves with equal probability to one of the neighbouring sites i — 1
and i+ 1; thus m;»m,—1 and m;, > m,;,  + 1.

We rescale the time, ¢ — p,t, so that the diffusion and aggregation
move occurs with rate 1 while chipping occurs with rate w= p,/p;.

This model clearly is a very simplified attempt to describe systems with
aggregation and dissociation occuring in nature. For example, if one is
thinking of gelation phenomena, then a polymer of size k is represented by
a point particle of mass £ in our model. Thus we ignore the spatial shape
of the real polymer which however can play an important role under certain
situations. We have also assumed that the fusion of masses after hopping
or chipping occurs instantaneously, i.e., the reaction time scale is much
smaller than the diffusion time scale. Thus our model is diffusion-limited.
A somewhat more severe assumption is however that both desorption and
diffusion rates are independent of the mass. In a more realistic situation
these rates will depend upon the mass. However, our aim here is not to
study any specific system in full generality, but rather to identify the
mechanism of a dynamical phase transition, if any, in the simplest possible
scenario involving these microscopic processes. If one is interested in a
more realistic description of any specific system, one could and should
include these features in the model. But for the purpose of this paper,
we stay with the simplest version and show below that even within this
simplest scenario, novel dynamical phase transitions occur which are non-
trivial yet amenable to analysis.

In this model, the total mass M is conserved and fixed by the initial
condition. Let p = M/N denote the density, i.e., mass per site where N is
number of sites of the lattice. In the above definition of the model, a mass
at each site can move symmetrically either to the left or to the right with
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equal probability. We call this the symmetric conserved-mass aggregation
model (SCA). In this paper we also study the fully asymmetric version of
the model where masses are constrained to move only in one direction (say
to the left). We call this the asymmetric conserved-mass aggregation model
(ACA). In the sections that follow, we show that the nonequilibrium criti-
cal behaviour of SCA and ACA belong to different universality classes.
This can be traced to the fact that in the asymmetric case there is a non-
zero mass current density in the system.

In both of these models, there are only two parameters, namely the
conserved density p and the ratio w= p,/p, of the rate of chipping of unit
mass to that of hopping of the entire mass on a site, as a whole. The ques-
tion that we mainly address in this paper is: given (p, w), does the system
reach a steady state in the long time limit? If so, how can we characterize
this steady state? We show below that indeed for all (p, w), the system does
reach a steady state. This is a nonequilibrium steady state in the sense that
for generic values of (p, w) it is not described by the Gibbs distribution
associated with some Hamiltonian. In order to characterize the steady state
we study the single site mass distribution function P(m, t) as the time
t —» 0. We show below that there exists a critical curve in the (p, w) plane
across which the steady state behaviour of the system, as characterized by
P(m), undergoes a novel phase transition.

Let us summarize our main results: In our model, there are two com-
peting dynamical processes. The diffusion cum coalescence move tends to
produce massive aggregates at the expense of smaller masses, and in this
process, also creates more vacant sites. The chipping of single units of
mass, on the other hand, leads to a replenishment of the lower end of the
mass spectrum. The result of this competition is that two types of steady
states are possible, and there is a dynamical phase transition between the
two across a critical line p(w) in the (p, w) plane. For a fixed w, if
p <pw), the steady state mass distribution P(m) decays exponentially for
large m. At p=p.(w), P(m) decays as a power law P(m) ~m ~" for large m,
where the exponent 7 is the same everywhere on the critical line p.(w).
A more striking and interesting behaviour occurs for p > p.(w). In this
phase, P(m) decays as the same power law ~m ™" for large m as at the
critical point, but in addition develops a delta function peak at m = co.
Physically this means that an infinite aggregate forms that subsumes a
finite fraction of the total mass, and coexists with smaller finite clusters
whose mass distribution has a power law tail. In the language of sol-gel
transitions, the infinite aggregate is like the gel while the smaller clusters
form the sol. However, as opposed to models of irreversible gelation where
the sol disappears in the steady state, in our model the gel coexists with
the sol, which has a power law distribution of mass. Interestingly, the
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mechanism of the formation of the infinite aggregate in the steady state
resembles Bose—Einstein condensation (BEC), though the condensate (the
infinite aggregate here) forms in real space rather than momentum space as
in conventional BEC.

This nontrivial dynamical phase transition occurs in both SCA and
ACA in all spatial dimensions d including d=1. We expect that the expo-
nent 7 depends on the dimension d but is universal with respect to lattice
structures and initial conditions. However, the bias in the movement of
masses that distinguishes the two models SCA and ACA is a relevant per-
turbation and the corresponding exponents 7, (for SCA) and 7, (for ACA)
differ from each other.

We comment on the relationship of our model and results to earlier
work on related models.

(i) Takayasu and coworkers have studied® a lattice model where
masses diffuse and aggregate upon contact as in our model. However our
model differs from the Takayasu model in the following important way. In
that model there is a nonzero rate of injection of a single unit of mass from
the outside into each lattice site, whereas in our model the injection move
is replaced by the “chipping” of a single unit of mass to a neighbouring
lattice site. Thus in our model total mass is conserved as opposed to
the Takayasu model where total mass increases linearly with time. In the
Takayasu model the mass distribution P(m) has a power law decay in the
steady state®® but there is no phase transition as in our conserved model.
Finally, while the directed and undirected versions of the Takayasu model
evolve in the same way, in our model directionality in motion changes the
universality class.

(ii) In the context of gelation, Vigil, Ziff and Lu® studied models of
coagulation and single-particle break off within a rate equation approach.
There is, however, a significant point of difference from our model: in our
model, the coagulation kernel is independent of mass, while in ref. 9 it is
proportional to the product of the two coagulating masses. The latter
feature strongly enhances the tendency towards aggregation, and leads to
the formation of an infinite aggregate (gel) in a finite time while in our
model an infinite aggregate forms only in the steady state.

(iii) Krapivsky and Redner (KR)!? studied a model of coagulation
(with a mass independent kernel) and single-particle break off, within a
rate equation approach. Our model is different, in that in addition to
aggregation and single-particle break off, it allows for diffusion of masses,
and is defined on a lattice. Besides, even within mean field theory (neglect-
ing diffusion), our model differs from KR in detailed moves. Despite this,
the leading asymptotic behaviours of our mean field equations (Section IIT)
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are similar to those of KR, reflecting the fact that the mean field equations
in both cases conserve mass. KR found that the asymptotic mass distribu-
tion decays exponentially in one phase, while it decays as a power-law in
the other phase. However the occurrence of a Bose—FEinstein condensation
like effect, leading to an infinite aggregate in the power law phase, was not
pointed out explicitly in ref. 10, though it was implicit in their equations.

An important point of difference between KR and the present work is
that we allow for diffusion of particles. This quantitatively changes the criti-
cal exponent characterizing the asymptotic behaviour of the mass distribu-
tion in lower dimensions, in particular for d =1, which we study in detail
(Section 1V).

(iv) Models of vacancy cluster formation consider the attachment
and detachment of single vacancies to clusters,!") often with rates that
depend on the cluster size. This would correspond to allowing only chip-
ping moves in our model (Section V A). Since cluster aggregation moves
are absent in this case, there is no tendency to form very large clusters and
the mass distribution decays exponentially with m.

(v) Recently, lattice gas models have been proposed!® to describe
the distribution of droplets in fast-expanding systems such as in the
fragmentation process following a nuclear collision. The distribution of
fragments shows a pronounced peak at the large mass end, reminiscent of
our infinite aggregate. However, the distribution of the remaining
fragments decays exponentially, and not as a power law as in our case.

(vi) Bose—Einstein-like condensation in real space has also been
found in lattice gas models of traffic*'*) in which different cars have dif-
ferent maximum speeds, chosen from an a priori specified distribution. This
corresponds to phase separation into high density and low density regions,
a phenomenon which is also found when randomness in hopping rates is
associated with points in space, rather than with cars.(!>!® An important
difference between these studies and ours is that they involve quenched dis-
order (the assignment of different maximum speeds, either to cars, or to
different lattice sites), whereas the BEC phenomenon in our case occurs in
the absence of disorder, in a translationally invariant system.

It should be pointed out that BEC is also found in other transla-
tionally invariant systems, which however differ from the present model in
important respects. For instance, the balls-in-boxes backgammon model!”
which shows BEC is an equilibrium model with infinite ranged moves, in
contrast to the nonequilibrium short-ranged model under consideration
here. Finally, the bus-route model'® exhibits BEC, but a strict transition
is obtained in that model only in the limit in which a certain local rate
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A— 0, whereas our model exhibits BEC over a wide range of parameter
space.

ill. MEAN FIELD THEORY

In this section, we study the conserved mass models within the mean
field approximation which keeps track only of the distributions of masses,
ignoring correlations in the occupancy of adjacent sites. The mean field
theory is identical for both the symmetric and asymmetric models. This is
a defect of the MF approximation as, in fact, the existence of a nonzero
mass current in the asymmetric model affects fluctuations in an important
way. Although MF theory misses this important aspect of the physics, it is
still instructive since it reproduces the phase diagram correctly, at least
qualitatively. Besides, in high dimensions where fluctuations are negligible,
the MF theory captures the correct physics even quantitatively.

Ignoring correlations between masses at neighbouring sites on the
lattice, one can directly write down the evolution equation for P(m, t), the
probability that any site has a mass m at time ¢,

%: —(1+w)[1+5(2)] P(m, 1) + wP(m +1, 1)
+ws(t) Plm—1,1)+ P % P; mz=1 (1)
%: —(L+w)s(t) PO, ) +wP(1, t)+s(¢) (2)

Here s(z) =1— P(0, ¢t) is the probability, that a site is occupied by a mass
and P« P=%"_, P(m',t) P(m—m', t)is a convolution term that describes
the coalescence of two masses.

The above equations enumerate all possible ways in which the mass at
a site might change. The first term in Eq. (1) is the “loss” term that
accounts for the probability that a mass m might move as a whole or chip
off to either of the neighbouring sites, or that a mass from a neighbouring
site might move or chip off to the site in consideration. The probability of
occupation of the neighbouring site, s(¢) =Y_, P(m, t), multiplies P(m, 1)
within the mean-field approximation where one neglects the spatial correla-
tions in the occupation probabilities of neighbouring sites. The remaining
three terms in Eq. (1) are the “gain” terms enumerating the number of
ways that a site with mass m’ #m can gain the deficit mass m —m'. The
second equation Eq. (2) is a similar enumeration of the possibilities for loss
and gain of empty sites. Note that the coordination number of the lattice
does not appear explicitly in the above equations as the rates of hopping
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(of either a single unit or the mass as a whole) to neighbours are defined
with respect to movements from or onto sites, and not across bonds.

Evidently, the MF equations conserve the total mass. Thus there are
two parameters in the model, namely the conserved mass density
p=> mP(m) and the chipping rate w.

Equations (1) and (2) incorporate the same physical processes as
KR, though their rate equations differ from (1) and (2) in details. For
instance in KR, single particles which break off from a mass do not
immediately recombine with other masses, but form a reservoir of m=1
particles; these unit masses subsequently coagulate with other masses. In
our case, by contrast, single particles which chip off to an already occupied
site immediately recombine with the mass on that site. Despite these dif-
ferences, we will see below that the behaviour of P(m) for large m is similar.
We also note that the chipping rate w was set to unity in KR. In our
model, we can explore the phase diagram in the full p —w plane which has
the advantage that we can study limiting points such as w — 0 or w— o0
corresponding to exactly solvable models even when diffusion is included
(see Section V).

We solve the equations (1) and (2) by a generating function technique.
Since this calculation has appeared earlier,””’ here we discuss only the
results.

We find that for fixed w, there is a phase transition at a critical density
pe=/w+1—-1

(1) For p<p,, the asymptotic mass distribution falls as
P(m) ~ e ="M jm>?2 (3)
where the characteristic mass m* diverges as p — p..
(i) For p=p,,
P(m) ~m~>? (4)

for large m.

(ii) For p>p,, the fractional number of occupied sites does not
increase but remains stuck at the value s,=(w+2—-2./w+1)/w. The
excess density is accommodated in an infinite-mass aggregate so we may
write

pP= (1_sc)+poo (5)

=
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where p is the fraction of the mass in the infinite aggregate. The
mechanism of the formation of the aggregate is reminiscent of Bose—
Einstein condensation. In that case, for temperatures in which a macro-
scopic condensate exists, particles added to the system do not contribute to
the occupation of the excited states; they only add to the condensate, as
they do to the infinite aggregate here.

IV. NUMERICAL SIMULATION IN ONE DIMENSION

In order to see if the MF phase diagram remains at least qualitatively
correct in lower dimensions, we have studied both SCA and ACA using
Monte Carlo simulations on a one-dimensional lattice with periodic
boundary conditions. Although we present results here for a relatively
small size lattice, N = 1024, we have checked our results for larger sizes as
well. We confirmed that all the qualitative predictions of the mean-field
theory remain true in 1-d though the exponents change from their MF
values.

Figure 1 displays two numerically obtained plots of P(m) in the steady
state of SCA. For fixed w= 1.0, we have measured P(m) for two values of
the density, namely p=0.2 and p=3.0. For p=0.2, we find exponential
decay of P(m) (denoted by x in Fig. 1). For p=3.0, P(m) decays as a
power law (denoted by + in Fig. 1) which is cut off by finite size effects but
in addition, there is a sharp peak at a much larger mass signalling the exist-
ence of the “infinite” aggregate as predicted in the MF theory. We con-
firmed that the mass M., in this aggregate grows linearly with the size,
and that the spread JM,, grows sublinearly, implying that the ratio
oM ,../M ., approaches zero in the thermodynamic limit. Further, the
cutoff on the power-law part of the distribution also grows sublinearly with
size, so its separation from the aggregate peak also grows with increasing
size (see Fig. 1). As one decreases p for fixed w, the mass M ., decreases
and finally vanishes at the critical point, p(w) where P(m) only has a
power law tail. For w =1, we find numerically p, (1) ~0.39. In the inset of
Fig. 1, we plot the numerical phase boundary in the (p, w) plane (denoted
by closed circles). For comparison, we also plot the MF phase boundary
p.w)=./(w+1)—1. In fact, it can be shown that the mean-field p(w) is
exact for the d=1 SCA.(*”

In Fig. 2 and in its inset, we present similar plots for the asymmetric
model ACA. Here the steady state mass distribution function P(m) is
plotted for two values of the density p =0.2 and p =10.0 with fixed w=1.0.
In the first case, P(m) decays exponentially whereas in the second case it
has a power law tail and in addition the “infinite” aggregate as in the case
of SCA.
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Fig. 1.

The exponent 7, for SCA which characterizes the finite-mass fragment
power law decay for p > p.(w) is numerically found to be 2.33 +0.02 and
remains the same at the critical point p = p(w). In the asymmetric model
ACA, we find the corresponding exponent 7, ~2.05 within numerical
error. Note however that because the total mass and hence the mass den-
sity, p =2 mP(m) is conserved and finite, the decay of P(m) must be faster
than m ~2 for large m to avoid ultraviolet divergence. In ACA the numeri-
cal value of 7, in 1-d is very close to 2 suggesting perhaps that P(m)
decays as m 2 with additional logarithmic corrections such that p remains
finite. But within our simulations, it is not easy to detect these additional

logarithmic factors. Thus clearly in 1-d, SCA and ACA belong to different
universality classes.

V. MAPPING TO A LATTICE GAS MODEL IN ONE DIMENSION

In this section, we show that in one dimension the mass model studied
above can be mapped exactly onto a lattice gas (LG) model consisting of



Diffusion, Aggregation, Fragmentation 1

ol ) | -
0011 . - ]
) + ++ P s - |
0001 - X ++++++ 0.; ) - ]
P(m) XX T ) - -

0.0001 | ) ]
1e-05} *X |
1e-06 | Xx _
1e-07 + . g |
16-08 | g . '

T 10100 100070000
m
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diagram. The solid line and the points indicate the phase boundary within mean field theory
and 1-d simulation respectively.

particles and holes. In the language of the LG model, it is somewhat easier
to understand the two phases and the transition between them. Besides, for
certain limiting values of the parameters, the steady state of the LG model
can be solved exactly.

Consider the mass model (both SCA and ACA) on a ring R of N lat-
tice sites. Let m, denote the mass at site i of R in a given configuration. Let
M =3, m; denote the total mass on R. We first construct a new ring R’
consisting of L =N+ M sites. For every lattice site i of ring R, we put a
particle (labeled by /) on ring R’ such that the ith and (i + 1)th particle on
R’ are separated exactly by m; holes. The ring R' will therefore have N par-
ticles and M holes. Also by construction, these particles on R’ are hard
core, i.e., any site of R’ can contain at the most one particle. Thus every
mass configuration on R maps onto a unique particle-hole configuration
on R'. In Fig. 3, we give an example of this mapping. We also note that
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particle density p’ on R’ is simply related to the mass density p on R via,
p'=N/N+M)=1/(1+p).

Given this exact mapping between configurations, we now examine the
correspondence between the mass dynamics on R and the particle
dynamics on R’. Consider a pair of neighbouring sites (i—1) and i on R
where the masses are m;_; and m;. This translates to having m,_, holes
to the right of (i— 1)th particle and m; holes to the right of ith particle
on R'. Consider first the chipping move that occurs with rate p, (Fig. 3).
If a single unit of mass chips off the (i — 1)th site and moves to ith site (i.e.,
m;_y—m;_;—1and m;—>m;+ 1) on R, it corresponds to the ith particle
on R’ hopping to its neighbouring site to the left with rate p,. Similarly,
the reverse move (i.e., m;—»>m;—1 and m;_, —>m,_,+ 1) corresponds to
the ith particle on R’ hopping one step to the right with rate p,. Thus the

151
A Py
N/

N

T
\

\§ \
\

\

Fig. 3. The constructions of the equivalent lattice gas model and interface model are
illustrated for a particular configuration of the conserved mass model. The shaded blocks
indicate the masses that would move as a result of “diffusion and aggregation” and “chipping.”
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chipping move of SCA on R corresponds precisely to the “symmetric exclu-
sion process” (SEP)?®” on R’ where a particle can hop to its nearest
neighbour on either side provided the neighbour is empty. Similarly the
chipping move of ACA on R corresponds exactly to the “asymmetric exclu-
sion, process” (ASEP)?%2:2%) on R’ where particles move only along one
direction on R'.

But in addition to chipping, we also have the diffusion and aggrega-
tion move in the mass model that occurs with rate p, (as shown for the
block of particles in Fig. 3). For a pair of sites (i — 1) and i with respective
masses m;_; and m; on R, suppose the whole mass m;_, moves to the ith
site (i.e., m;_; = 0 and m; > m;+ m,_,). This would mean that on R’, the
ith particle jumps to the farthest available hole (without crossing the
(i — 1)th particle) to its left with rate p,. Similarly the reverse move, m; — 0
and m;_, > m;_,;+ m;, would translate on R’ to the ith particle jumping
to the farthest available hole to its right (without crossing the (i + 1)th par-
ticle) with rate p,. In the asymmetric version of the model, the particle can
jump to the farthest available hole (without crossing the next particle) in
one direction only.

To summarize, in our LG model we have hard core particles with par-
ticle density p’. The world lines of particles cannot touch or cross each
other due to their hard core nature. There are two possible moves for each
particle. With rate p,, a particle moves to its adjacent site (if it is empty)
and with rate p, the particle jumps to the farthest available hole maintain-
ing the hard core constraint. In SCA, the particle can hop with equal prob-
ability to the left or right while in ACA, it hops only in one direction, say
to the right. In this LG language, it is the competition between the short
range and long range hopping of the particles that is responsible for the
phase transition. As in the mass model, the only two parameters of the
model are the ratio of the two rates w = p,/p, and the density of particles p’.
We also note that P(m) in the mass model corresponds to the size distribu-
tion of hole clusters in the LG model.

In the following we fix the density of particles p’ and study the two
extreme limits w — co and w =0 where exact results can be obtained.

A. Only Chipping: w —> o

Since w= p,/p,, the limit w— oo corresponds to p;=0 with p,
remaining nonzero. This means only chipping moves are allowed in the
mass model. As mentioned in Section II, in this limit the model has some
resemblance to models of vacancy cluster formation,'" with mass in our
model representing the number of vacancies in a cluster. Chipping off from
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clusters with m >2 corresponds to vacancy detachment, whereas the chip-
ping move for m=1 is tantamount to either diffusive hopping (if the
neighbouring site is empty), or to attachment to a cluster (if the neighbour-
ing site has a mass on it).

In the LG version, the “only-chipping” model corresponds to just the
exclusion process‘®® 2! either symmetric (SEP) (corresponding to SCA) or
asymmetric (ASEP) (corresponding to ACA). For both SEP and ASEP all
configurations are equally likely in steady state, implying product measure
in the thermodynamic limit.®**2! The probability P(m) of having exactly
m holes following a particle is simply given by P(m)=p'(1 —p’)™. Using
p' =1/(1+ p), we thus obtain an exact result for P(m) of the mass model
in the w — oo limit,
pm

P =g e

(6)

which clearly demonstrates the exponential decay of P(m) for large m.

We note in passing that Eq. (6) also describes the distribution of
masses in any dimension in an “only chipping” model in which the rate of
chipping at site i is proportional to the mass m,; on that site. In this case,
evidently every unit of mass performs a simple random walk, and the
problem is tantamount to that of M independent random walkers on the
lattice. Standard methods of statistical mechanics can then be used to
describe the steady state. The grand partition function is then

Z=(1+Z+22"')N=(1_2)N (7)

where z is the fugacity, and the probability of finding m particles on a site
is

P(m)=(1—z)z" (8)

Eliminating z in favour of p=z/(1 —z), we see that Eq. (8) reduces to
Eq. (6).

B. No Chipping: w=0

We now consider the other limit w =0 where there is no chipping and
the masses only diffuse as a whole and aggregate with each other. In
the LG language, this would mean that particles undergo only long range
hopping to the farthest available hole (without crossing the next particle).
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In order to find the exact steady state in this limit, we first consider the
mass model on a finite ring R of N sites and total mass M = pN. As time
progresses, masses diffuse and coagulate with each other and the number
of empty sites increases. Since the diffusive motion confined in a finite
region of space is ergodic, eventually all the masses will coagulate with
each other and there will be precisely one single big conglomerate with
mass M which will move on the ring. Thus in the steady state, one gets
exactly, P(m)=0(m— pN). In the LG language, this would mean that on
a finite lattice, the particles and holes will become completely phase
separated in the steady state.

It is also useful to study the approach to this phase separated steady
state. We first note that on an infinite 1-d lattice, the time dependent single
site mass distribution function, P(m, t) can be exactly solved in the w=0
limit.*” It was shown exactly in ref. 27 that in the scaling limit, m — oo,
t— oo but keeping m/\ﬂ fixed, the function P(m, t)~t~'2S(m/c \ﬂ)
where the constant ¢ depends on the initial condition but the scaling func-
tion S(x) is universal and is given by

2

S(x)zgexp { —HZ} 9)

In the LG model, this would mean that as time progresses, the system
undergoes phase separation and breaks into domains of particles and holes.
The average linear size of these domains grows with time as /(z) ~ t'/? at
late times. At this point it is useful also to note that in usual models of
coarsening with locally conserved dynamics, the domain size grows as
I(t) ~ 112 @® as opposed to ¢'/? here. This, however, is not entirely surpris-
ing since in our model, even though the particle number is conserved
globally, the long range hopping effectively reduces this to a locally non-
conserved model with growth law 72 Similar behaviour was noticed
earlier in other models of coarsening with globally conserved dynamics.*
In an infinite system the domain size keeps growing indefinitely as
I(t) ~ t'2. However in a finite lattice of L sites, when /(¢) ~ L after a time
t ~ L? the domains stop growing and the system eventually breaks up into
two domains only, one of particles and the other of holes. We note that all
the conclusions reached in this subsection are equally valid for both sym-
metric and asymmetric versions of the model.

To summarize this section, we find that for fixed p in one dimension,
the two extreme limits w — 0 and w— oo are exactly solvable for their
steady states. In the limit w — 0, the system has a phase separated steady
state in the LG model which in the mass model corresponds to having
a single massive aggregate. In the other limit w — oo, the LG corresponds
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to the simple exclusion process with product measure steady state, which
corresponds to an exponential mass distribution in the mass model. Thus
there is a competition between the long range hopping that tends to create
phase separation and the short range hopping that tends to mix the par-
ticles and holes to produce a product measure steady state. As w is
increased from 0 for fixed p, the massive aggregate coexists with power law
distributed smaller masses (or hole clusters in the LG language) up to
some critical value w_.(p). For w>w_(p), the massive aggregate disappears
and the cluster size distribution of holes becomes exponential.

VI. DYNAMICS IN ONE DIMENSION: MAPPING TO
INTERFACE MODELS IN (1+1) DIMENSION

In the previous sections we have studied the static properties of the
model in the steady state. However it is also important to study the
dynamics of the model in the steady state. The universal features of the
dynamics is usually best captured by time dependent correlation functions
in the steady state. In this section we however take a slightly different
route. Instead of studying the time-dependent correlation functions directly
in the mass or the equivalent lattice gas model, we first map the LG model
onto an interface model and then study the time dependent properties of
the width of the fluctuating interfaces. The advantage of this route is that
not only does it capture the essential universal features of the dynamics,
but it also makes contact with other well studied interface models in certain
limiting cases.

There is a standard way®" to map a LG configuration in one dimen-
sion to that of an interface configuration on a 1-d substrate. One defines
a new set of variables {S;} such that S,=1 if the ith site is occupied by
a particle and S;= —1 if it is empty. Then the interface height 4, at site i
is defined as, h,:zj".:l S;. Thus the overall tilt of the interface, tan 0=
(hy—hy)/L=2p"—1 is set by the particle density p’ in the LG model.

The different dynamical moves in the LG model can be translated in
a one to one fashion to corresponding moves of the interface. For example,
if a particle at site i jumps one unit to the right, it corresponds to the
decrease of height /4, by 2 units, s, > h;— 2. Similarly, if the particle at site
(i+1) jumps one unit to the left, the height %, increases by 2 units,
h;— h;+ 2. Thus the nearest neighbour hopping of particles to the left or
right in the LG model corresponds respectively to deposition and evapora-
tion moves in the interface model. Similarly the long range hopping of a
particle to the farthest available hole before the next particle would trans-
late to nonlocal moves in the interface as shown in Fig. 3. Once again, the
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ratio of the rates of evaporation-deposition moves to that of the nonlocal
moves is given by the parameter w.

A natural measure of the fluctuations of the interface is its width
defined for a finite system of size L as,

1 & -
WL =7 X [hi=h] (10)

where h=Y% | h,/L. The width W(L,t) is expected to have a scaling
form, @V

W(L, t) ~ L*F(t/L%) (11)

in the scaling limit with large L, large ¢ but keeping ¢/L? finite. The
exponents y and z are respectively the roughness and the dynamical
exponents and the scaling function F(x) is universal with the asymptotic
behaviour: F(x)— O(1) as x — oo and F(x)~x? as x >0 where f=yz.
The exponents y and z characterize the universality classes of the interface
models.

In the following we keep the particle density p’ fixed and investigate
the width of the corresponding interface model W(L, t) by varying the
parameter w. How do the exponents y and z that characterize the universal
behaviour of interface fluctuations change as one varies w from 0 to o0? We
study this question for both the symmetric and the asymmetric models and
denote the respective exponents by (3%, z() and (x*”, z(4)). In the follow-
ing three subsections, we study the width W(L, ¢) in both models for three
special values of w, namely w — co, w=0 and w=w_.p’). In the first two
cases we find analytical results whereas in the last case, we present numeri-
cal results only.

A. Only Chipping: w - «©

We first consider the symmetric mass model SCA whose lattice gas
equivalent corresponds to the SEP in the w— oo limit as noted in Sec-
tion V. This means that in the corresponding interface model, nonlocal
moves are absent and the only allowed moves are evaporation and deposi-
tion subject to certain local constraints. An important property of this
symmetric model is that the average velocity of the interface is zero as the
evaporation and deposition occurs with equal probability. It is well
known® that the continuum version of this discrete interface model corre-
sponding to SEP is well described by the Edwards—Wilkinson equation. (3% 2%
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This linear evolution equation can be easily solved and one gets the exact
exponents, ?* 2%
=1 9=2 (12)
The LG equivalent of the asymmetric mass model ACA in the w — o
limit is the ASEP. In the corresponding interface model the allowed moves
are either only deposition or only evaporation (but not both) depending
upon the direction of particle motion in ASEP. Thus the interface has a
nonzero average velocity and its continuum version is known®! to be
described by the nonlinear KPZ equation.®” In one dimension, the KPZ
equation can be solved exactly and the exponents are known to be,®¥

2=k s =3 (13)

Thus in the limit w — oo, our model reduces to two known interface
models for symmetric and asymmetric cases respectively and the corre-
sponding exponents are obtained exactly.

B. No Chipping: w=0

We have mentioned in Section V that in the w— 0 limit, as time
progresses the LG phase separates into domains of particles and holes. In
the equivalent spin representation where a particle is represented by an up
spin, S;=1 and a hole by a down spin, S; = —1, this then represents a spin
model coarsening with time with average domain size growing as /(z) ~ t/2,
In a finite system of length L, eventually the system breaks up into two
domains of opposite signs. In the interface representation, this would mean
that the system would develop a single mound. Mound formation has also
been studied recently in other interface models.?®

We note from Eq. (10) and the definition, /,=37_, S; that the
calculation of the width W(L, t) requires the expression for the equal time
spin correlation function, {S(i, ¢) S(J, t)> in the equivalent spin model.
From the general theory of coarsening it is known®® that for /(¢) << L,
the equal time spin correlation function satisfies the scaling behaviour,
{S(0,¢) S(r, t)> ~G(r/l(t)). We have assumed that the system size L is
large so that translational invariance holds in the bulk of the system. Using
this scaling form in Eq. (10) and the result /() ~t"? a simple power
counting gives W(L, t) ~ LF(t/L?). Thus for w=0, we have the exponents,

Jo=1; Zo=2 (14)
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for both the symmetric and asymmetric models. The roughness exponent
Xo=1 can be easily understood from the fact that in the steady state the
system develops a single mound whose maximum height is of O(L) and
hence the width of the fluctuations is also of order L.

C. Critical Point: w=w_(p)

In this subsection, we keep the density p’ =1/(1 + p) fixed and tune w
to its critical value, w=w_(p) and calculate the width W(L, t) of the inter-
face. Unfortunately we are unable to obtain any analytical result for this
critical case and will only present numerical estimates.

We first consider the symmetric model. In this case we fix p = 1. In the
LG language this means particle density, p’=1/2. We first estimate the
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Fig. 4. The scaled width W/L” is plotted against the scaled time ¢/L- for lattice sizes L = 16,
32, 64, 128 and 256 at the critical point p =1, w.~3.35) of the interface corresponding to
SCA. The best data collapse is obtained with the choice of exponent values, y ~0.67 and
zr2.1.
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critical point, w.(p =1)=3.35 by simulating the equivalent mass model.
Next we fix the value of p=1 and w=3.35 in the interface model and
measure the width W(L, t) for different lattice sizes, L = 16, 32, 64, 128 and
256. In order to verify the scaling form, W(L, t) ~ L*F(t/L*), we plot in
Fig. 4, W/L* as a function of ¢/L for different L. The best collapse of data
is obtained with the choice, x'” ~0.67 and z!*) ~2.1. The asymmetric case
however is much more complicated due to the possible existence of
logarithmic factors in one dimension and perhaps also due to other strong
corrections to scaling. Proceeding as in the symmetric case, we first
estimate the critical point, w (p=1)~0.77 and measure the width
W(L, t). In this case we did not find a good data collapse using the canoni-
cal scaling form, W(L, t) ~ L*F(t/L"). Instead we tried collapsing the data
assuming, W(L,t)~ W, F(t/L?) where W, is the steady state width
W(L, o). This gives a somewhat better convergence to the collapse as L
increases as shown in Fig. 5 with the choice z~ 1.67. In the inset, we plot
W, vs. L. Tt is difficult to estimate the asymptotic growth W~ L*
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Fig. 5. The scaled width W/W, is plotted against the scaled time #/L” for lattice sizes L = 16,
32, 64, 128 and 256 at the critical point (p =1, w.~x0.7) of the interface corresponding to
ACA. The best convergence to data collapse as L increases is obtained with the choice
z= 1.67. Inset shows W, plotted against L.
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(possibly with a logarithmic corrections) from the available data. A naive
linear fit to the log-log plot of W, vs. L gives an estimate of the slope,
x~0.68. Thus given the available data, we find the approximate estimates
for the exponents, y'“’~0.68 and z(“)~1.67 at the critical point of the
asymmetric model. However these are just approximate estimates and one
needs larger scale simulations to determine the exponents more accurately
for the asymmetric model.

D. Flows

We have also studied the width W(L, t) numerically for other values
of w. This includes the numerical verification of analytical predictions for
the exponents in the limit of small and large w. We do not present here all
these details but summarize the main picture that emerges from these
studies by means of the schematic flow diagram shown in Fig. 6.

We find three different sets of exponents (y, z) that characterize the
behaviour in three regions on the w axis for fixed p: subcritical when
w<w,p), critical when w=w_(p) and supercritical when w>w_p). The
subcritical regime is controlled by the aggregation fixed point (denoted
AGG in Fig. 6) at w=0, ie., the phase separation fixed point with y =1
and z=2 for both symmetric and asymmetric models. The supercritical
regime is controlled by the fixed point at w — co. For the symmetric case,
this is the Hammersley—-Edwards—Wilkinson fixed point HEW (y=1/2,
z=2), whereas in the asymmetric case this is the KPZ fixed point (y =1/2,
z=13/2). The fixed points SC and ASC in Fig. 6 correspond to criticality in
the symmetric and asymmetric conserved mass models respectively; these

W
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(X=0-67,2=2) HEW

* =
Bias /k * (X=%,Z=2)

*

AGG
Yoo  yKPZ

ASC 1.3
O=061~167)  FT2ED

Fig. 6. Schematic depiction of fixed points and associated flows.




22 Majumdar et al.

are new unstable fixed points with exponents, (¥ ~0.67,z=x2.1) for the
symmetric case and (y ~ 0.68, z ~ 1.67) for the asymmetric case respectively.

VIl. GENERALIZATION TO ARBITRARY FRAGMENTATION
KERNEL: RELATION TO OTHER MODELS

In the mass model discussed so far we have considered only two pos-
sible moves, namely “chipping” of a single unit of mass to a neighbouring
site with rate w or hopping of the mass as a whole to a neighbouring site
with rate 1. However in a more general setting, k& units of mass can break
off a mass m and hop to a neighbouring site with rate p(k | m) where k <m.
In the equivalent lattice gas version in one dimension, this would mean the
hopping of a particle with rate p(k|m) to the kth hole to the right or left
without crossing the next particle which is located at a distance m + 1. In
the asymmetric version, the particles jump only along one direction as
usual (either left or right). In the model studied so far,

plk | m)=wog 1+ 9k m (15)

where J;; is the Kronecker delta function. With this mass fragmentation
kernel, we have seen that in the steady state the system undergoes a non-
equilibrium phase transition as the parameter w that controls the relative
strength of the two delta peaks is varied.

The question naturally arises as to whether this phase transition exists
for other fragmentation kernels p(k | m). In general, it is hard to find the
steady state analytically for arbitrary p(k | m). However, for some special
choices of the kernels, it is possible to obtain exact steady states via map-
pings to some other solvable models of statistical mechanics. Below we list
a few of them.

In the context of traffic models, Klauck and Schadschneider recently
studied®” an asymmetric exclusion process in one dimension where a
particle can jump either to the neighbouring hole to the right with rate p,
or to the second hole to the right with rate p,. The corresponding jump
kernel can be written as

plk | m)=p0x 1+ P20y » (16)

By generalizing the matrix product ansatz used for ASEP,?® the steady
state of this model was shown®? to have simple product measure for all p,
and p,. Using this result, it is easy to show that in the corresponding mass
model with mass density p, the steady state single site mass distribution
P(m) (the same as the probability of having a hole cluster of size m in the
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LG model) is simply given by, P(m)=p/(1+p)™*+! and therefore decays
exponentially for large m for arbitrary p; and p,.

Recently Rajesh and Dhar studied®" an anisotropic directed percola-
tion model in 3 dimensions. Their model can be reduced to an asymmetric
hard core LG model with the following jump kernel,

plk|m)=p' o1 —p)y"=* (17)

where 0 <p < 1. By mapping it to the five vertex model, the steady state
of this model was shown exactly to have a simple product measure for
all p. This then immediately gives for the mass model, once again, P(m)=
p/(L+p)m+h,

Another exact result can be derived for the following asymmetric mass
model. Instead of discrete mass, we now consider continuum masses at
each site. The mass m; at each site i evolves in discrete time according to
the following stochastic equation,

mi(t+1):qi71,imi71(l)+(1_qi,i+l)mi(l) (18)

where the random variable ¢, , ; represents the fraction of mass that
breaks off from site (i —1) and moves to site i. We assume that each of
these fractions are independent and identically distributed in the interval
[0, 1] with some distribution function #(g). We show in the Appendix that
for the special case of uniform distribution, i.e., #(¢)=1 for all ¢ in [0, 1],
the exact steady state distribution P(m) is given by,

4
P(m) =2 ¢=2mip (19)
p

where p =[5> mP(m) dm is the conserved mass density fixed by the initial
condition. In the LG language, this would mean that if m; is the distance
between ith and (i+ 1)th particle, then the ith particle can jump to any
distance between k and k + dk to the right (without crossing the next par-
ticle on the right) with uniform rate p(k | m;) dk = (1/m;) dk. In order to
verify the exact formula for P(m) in Eq. (19) we performed numerical
simulation in 1-d. In Fig. 7, we show for p=1, the perfect agreement
between the theoretical cumulative mass distribution, F(m) = yg" P(m'") dm’
=1—e 2" —2me~?" and the numerically obtained points from the
simulation. We note that a similar result was recently derived®® in the
context of the generalized Hammersley process.®®

Thus in all these cases studied in this section, we find exponential
decay of the mass distribution for large mass in the steady state. It would
therefore seem that only for the special kernel, p(k | m)=wd; 1 + 6, ., is
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7. The theoretical cumulative mass distribution function, F(m)=1—e
(continuous line) plotted against m along with the numerically obtained points from the

Fig.
simulation of the model in one dimension for mass density p = 1.

there a nontrivial phase transition from a phase where P(m) decays
exponentially to another where it has a power law decay in addition to an

infinite aggregate. The presence of two delta function peaks in p(k | m)

seem to be crucially responsible for this phase transition. We believe that
the phase transition will still persist if one allows for a nonzero width to the
delta peaks at the two ends of the kernel near k =0 and k = m but making
sure that the widths remain finite even as m — oo. This however needs

further studies to be confirmed.

VIIl. CONCLUSION
In this paper we have studied a lattice model of aggregation and dis-

sociation where a mass from a site can either move as a whole to a
neighbouring site with rate p, or can chip off a unit mass to a neighbour
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with rate p,. The hopped mass then aggregates instantaneously with the
mass that is already present at the neighbour. The ratio of the rates,
w= p,/p; and the conserved mass density p are the only two parameters
of the model. The steady state of the model undergoes a phase transition
as the parameters (p, w) are varied. In the (p, w) plane there is a critical
line that separates two phases: (i) the “Exponential” phase where the single
site mass distribution P(m) decays exponentially for large m and (ii) the
“Aggregate” phase where P(m) has a power law decay in addition to a
delta function peak at m= oo signifying the presence of an infinite
aggregate. On the critical line, the aggregate vanishes but P(m)~m™*
retains the same power law tail. We have also studied how the universality
class of this dynamical phase transition changes on applying a bias in a
particular direction of the mass transport.

We have solved the model exactly within the mean field theory and
presented numerical results for one dimension. Besides, by exploiting a
mapping to a lattice gas model in 1-d, we have obtained the steady state
distribution P(m) exactly for small and large w. We have further mapped
the lattice gas model to an interface model in (1 +1) dimension and
studied the width of the interface that characterizes its fluctuations. We
have calculated the roughness exponent y and the dynamical exponent z
analytically for small and large w both with and without bias. We have
computed these exponents numerically at the critical point and shown that
the two critical points (with and without bias) represent two new fixed
points of interface dynamics in (1 + 1) dimension.

We have also generalized our model to include arbitrary fragmenta-
tion kernels and obtained a few exact results for special choices of these
kernels via mappings to other solvable statistical mechanics models studied
in the recent past.

Our model obviously has some shortcomings as a model of realistic
aggregation and fragmentation phenomena. For example, we have assumed
that the rate of hopping of a mass as a whole is independent of the mass.
In a realistic setting this is perhaps not a good approximation, and to
model a specific system one needs to incorporate a mass-dependent hop-
ping rate. This however has not been attempted in this paper, where our
aim is to understand the mechanism of the dynamical phase transition
induced by the basic microscopic processes of diffusion, aggregation and
fragmentation within a simple setting.

However there remain many open questions even for this simple
model. For example, in one dimension we were not able to compute
analytically the various exponents at the critical point. Given that there has
been recent progress in determining the exact steady states of a class of
exclusion processes in one dimension via using a matrix product ansatz®®
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and coordinate Bethe ansatz,®
steady states of our model in 1-d.

Another important open question that needs to be studied for both the
symmetric and asymmetric models: What is the upper critical dimension d,
of these models beyond which the mean field exponents will be exact? In
analogy to other diffusion limited models studied earlier,®” one expects
that in the symmetric case d.=2. This expectation is supported by the
numerical fact that the exponent 7,~2.33 in 1-d is already close to its mean
field value 5/2. This conjecture however requires a proof.

The question of upper critical dimension is however puzzling for the
asymmetric model where the numerical value of 7,,~2.05 (perhaps 7, =2
with logarithmic corrections) is quite far from the mean field value 5/2.
This indicates that the d, (if there exists one) for the asymmetric case might
even be bigger than 2, contrary to the naive expectation that the d, of
directed models is usually lower than that of undirected models. A numeri-
cal study of the asymmetric model in 2 dimensions may shed some light on
this puzzle.

it may be possible to obtain the exact

APPENDIX: EXACT RESULT FOR UNIFORM
FRAGMENTATION KERNEL

In this appendix we solve exactly the steady state single site mass dis-
tribution function P(m) for the model where the mass m; at every site i
evolves in discrete time according to the stochastic Eq. (18), where the
fractions ¢, ; are independent and identically distributed random variables
in [0, 1] with distribution function #(g). We note the formal similarity
between Eq. (18) and the force balance equation in the ¢-model of
Coppersmith et al.,*?

W(i,D+1) Zqﬂ +1 (20)

where W(i, D) represents the net stress supported by a glass bead at a
depth D in a cylinder and g, is the fraction of the stress transported from
particle j at layer D to a particle i at layer (D + 1). The only difference
between Eq. (18) and Eq. (20) is in the additional constant term 1 in
Eq. (20) that is absent in Eq. (18). Nevertheless the same line of argument
as in ref. 32 leads to an exact solution in our case also as we outline below.

We first consider the mean field theory where we neglect correlations
between masses. For simplicity, we use the notations, ¢;_, ;=¢;, 1 —¢q; ;41
=q,, m;_;=m; and m;=m,. Then the mass distribution satisfies
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1 1 0 o0
P(m,t+1)=J0 L dq, dg,n(q,) n(1—gq5) jo Jo dm, dm,
X P(my, t) P(m,, t) 6(m—myq, —myq,) (21)

where we have used Eq. (18). In the limit # > co and for the uniform dis-
tribution 5(¢q) =1, the Laplace transform P(s) of the distribution P(m)
satisfies the equation

Plo)=| [ do Plsg)| (22)
Defining V(s) =./P(s) and u = gs, we get from Eq. (22),
sV(s) =f du V(1) (23)

Differentiation with respect to s yields

dv
V(s)+s—=V?s) (24)
ds
which can be integrated to give
Vis)=— (25)
VTG

The constant C is determined from the mass conservation equation,
jg@ mP(m) dm= —dP(s)/ds|,_,=p where p is the conserved mass density.
Thus, C=dV/ds|,_,= —p/2. Hence we get, P(s)=1/(1+(p/2) s)* and by
inverse Laplace transform,

P(m)=— e~2"m/r (26)

This is the mean field result for P(m). However in ref. 32, it was proved
that for a uniform distribution #(g) =1, the mean field stress distribution,
where the stresses satisfy Eq. (20), is exact. The explicit algebraic proof in
ref. 32 proceeded via constructing exact recursion relations for the joint
probability distribution of the weights in row (D + 1) in terms of those for
row D, and showing that the mean field factorization of these joint dis-
tributions are invariant under this recursion. The same line of proof can be
adapted to show that the mean field result Eq. (26) is also exact for our
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problem. We do not give details of the proof here as they can be found in
ref. 32.

NOTE ADDED IN PROOF

As mentioned in the text, the mean-field phase diagram can be shown
to be exact even though equations (1) and (2) make the approximation of
ignoring correlations in the occupation of adjacent sites. In fact, more
careful numerical analysis has shown that the mean-field answer for the
single-point function P(m) may also be exact, with the exponent value
7 =2.33 reported in the text actually tending to the mean-field value 7=2.5
for large m.
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